Name: KeV	Date:
Science 7	Work and Machines
	work and Machines
	te as work.
Do Now: Identify if work is being done in each situation.	
1. A scientist delivers a speech to an audience of his	peers. (Work / No Work)
2. A body builder lifts 350 pounds above his head. (V	Nork / No Work)
3. A mother carries her baby from room to room. (W	Tork / No Work)
4. A father pushes a baby in a carriage (Work) No	Work)
5. A woman carries a 20 kg grocery bag to her car. (1	Work No Work)
Notes:	E wo
Work	
 The transfer of energy through motion 	25.02
 Work depends on the <u>Qmount</u> of <u>fo</u> 	rce exerted
and the <u>distance</u> over which the <u>fa</u>	
applied.	Torce Distance
 Something needs to and in the 	Clicection
of the applied force.	
Evennle Questions:	
Example Questions:	ant his haddnest up a mauntain. On a
1. On a warm day, a climber does 3,000 J of work to	
snowy day, he adds equipment to his pack. If he cli (more / less / same amount of) work.	minds to the same neight, he would do
(more) less / same amount of) work.	
2. If the climber's pack stayed the same weight and	the climber only climbed halfway up, he
would do (more / less / the same amount of) wor	
3. A waiter carries a 5 N tray of food while he walks	a distance of 10 meters. Is work done
on the tray? Why or why not?	*
NO. The water is pushing up	on the tray but
the motion is going to the	right or left.
101= Ed	
W=Fd = 5H(10m)	
- 3N (1011)	10
EU	14

GO over test

# (7.	The	beach	nuch work is do	move	SO	there's	
	SIX (- V. //		0.0	1177.11	
100		ICII X.						

5. How much work does the climber do on his backpack if his pack weighs 90 N and he climbs to a height of 30 m?

Formula: W= Fd

Substitute:
W= 90 N (30m)

Final Answer with Units:
W= 2,700.0 J

6. How much work do you do when you push a shopping cart with a force of 50 N for a distance of 5 m?

Formula: W = FdSubstitute: W = 50 N (5 m)Final Answer with Units: W = 250.0 J

7. A boy lifts a 30N dragon 2 meters above the ground. How much work did the boy do on the dragon?

Formula: W = FdSubstitute: W = 30 N (2m)Final Answer with Units: W = 60.0 J

