Aim: I can recognize physical and chemical properties and changes in matter

WHAT IS MATTER?

Anything that has mass and takes up space

PHYSICAL PROPERTIES

- Used to identify, describe, and classify matter
- Can be observed
- Examples:
 - Color
 - Phase at room temperature
 - Shape
 - Heat conductivity
 - Electrical conductivity
 - Freezing or boiling point
 - Texture
 - Density
 - Hardness
 - o Odor
 - Viscosity

CHEMICAL PROPERTIES

- Describe how a substance changes into a new substance
- Examples:
 - Ability to burn (flammability)
 - Ability to rust
 - o Ability to react with acids

PHYSICAL CHANGES

- Matter changes (state or phase) but keeps its chemical composition and properties
- Examples:
 - Phase changes (freezing, melting, condensation, evaporation)
 - Tearing
 - Crushing

CHEMICAL CHANGES

- New substances are formed with different chemical properties
- Indicated by bubbles, heat production, light production, changes in color, smoke
- Examples:
 - o Burning wood
 - Cooking food
 - Iron rusting
 - Milk souring

Aim: I can classify mixtures as homogeneous or heterogeneous

ATOMS & ELEMENTS

- The basic particles from which all elements are made
- Elements are materials listed in the Periodic Table

ELEMENTS

- Found on the Periodic Table of Elements
- All atoms in the sample have the same identity.
 - They are pure
 - o Cannot be broken into smaller, pure substances

Examples:

- o Na (sodium), Fe (iron), Mg (magnesium), Zn (zinc)
- Every time you see a new capital letter, it's a new element!

ELEMENTS

MOLECULES

- Any 2 or more elements combined (chemically bonded together)
- Ex: 0₂ (oxygen), H₂O (water), CO₂ (carbon dioxide)

COMPOUNDS

- Are made from two or more different elements combined.
- Ex: H₂O (water), CO₂ (carbon dioxide)

CHEMICAL FORMULAS

• Example: Water

2 DIFFERENT ELEMENTS, 3 TOTAL ATOMS, 1 MOLECULE

CHEMICAL FORMULAS

2Fe₂O₃

2 MOLECULES

Fe = 4

10 TOTAL ATOMS

2 DIFFERENT ELEMENTS (Fe and O)

0 = 6

MIXTURES

- A major characteristic of mixtures is that the materials DO NOT chemically combine.
- Since these mixtures are just physical blends, they can be separated easily, by physical means (no chemical reactions required).

 MIXTURES

HOMOGENEOUS MIXTURES

• Homogeneous mixtures can also be called solutions(aq), and if something is a solution, it must be a homogeneous mixture.

• One phase with uniform properties throughout, having even mixtures of each component.

• Examples: salt water, coffee, tea

HETEROGENEOUS MIXTURES

• Heterogeneous mixtures have parts that are noticeably different because they are in different phases, shapes and sizes.

• Uneven or non uniform composition

Examples: granite, chicken soup, blood.

- Sorting
- Magnetism
- Filtration
- Sifting or sieving
- Extraction and evaporation
- Chromatography

