$$a = \frac{(speed_{end}) - (speed_{start})}{time}$$

One second later

Practice Problems

1. A car's velocity changes from 0 m/s to 30 m/s 10 seconds later. Calculate the car's average acceleration.

Known Values:	Initial Velocity = Omls Time = 105
	Final Velocity = 30m/s
Unknown Value:	
	Average acceleration
Formula and Work:	
	$A = \frac{V_2 - V_1}{t} = \frac{30 \text{m/s} - 9 \text{m/s}}{10 \text{s}} = \frac{30 \text{m/s}}{10 \text{s}}$
Solution:	
	$3.0 \mathrm{m/s^2}$

2. As a roller coaster starts down a hill, its speed is 10 m/s. Three seconds later, its speed is 32 m/s at the bottom of the hill. What is the roller coaster's acceleration?

Speed=10m/s Time=3s	
Final Speed = 32 m/s	
Acceleration	
$A = \frac{S_F - S_I}{t} = \frac{32ml_S - 10ml_S}{3s} = \frac{22ml_S}{3s} n$	
7.3 m/s ²	

